16个极限公式
以下为16个常见的极限公式: 常数函数极限 lim x → a C = C \lim_{x \to a} C = Climx→aC=C (C CC为常数,a aa为任意实数,表示当x xx趋近于a aa时,常数函数的值恒为C CC ) 幂函数极限 lim x → a x n = a n \lim_{x \to a} x^n = a^nlimx→axn=an (n ∈ N n \in Nn∈N,a aa为实数,当x xx趋近于a aa时,x xx的n nn次幂的极限等于a aa的n nn次幂) lim x → ∞ 1 x n = 0 \lim_{x \to \infty} \frac{1}{x^n} = 0limx→∞xn1=0 (n > 0 n > 0n>0,当x xx趋于无穷大时,x xx的正数次幂分之一的极限为0 00 ) 两个重要极限 lim x → 0 sin x x = 1 \lim_{x \to 0} \frac{\sin x}{x} = 1limx→0xsinx=1 lim x → ∞ ( 1 + 1 x ) x = e \lim_{x \to \infty} (1 + \frac{1}{x})^x = elimx→∞(1+x1)x=e (e ee是自然常数,约为2.71828 2.718282.71828 ) 其变形公式:lim x → 0 ( 1 + x ) 1 x = e \lim_{x \to 0} (1 + x)^{\frac{1}{x}} = elimx→0(1+x)x1=e 指数函数极限 lim x → + ∞ a x = + ∞ \lim_{x \to +\infty} a^x = +\inftylimx→+∞ax=+∞ (a > 1 a > 1a>1,当x xx趋于正无穷时,底数大于1 11的指数函数值趋于正无穷) lim x → − ∞ a x = 0 \lim_{x \to -\infty} a^x = 0limx→−∞ax=0 (a > 1 a > 1a>1,当x xx趋于负无穷时,底数大于1 11的指数函数值趋于0 00 ) lim x → + ∞ a x = 0 \lim_{x \to +\infty} a^x = 0limx→+∞ax=0 (0 < a < 1 0 < a < 10 m n > mn>m 时,lim x → ∞ P ( x ) Q ( x ) = ∞ \lim_{x \to \infty} \frac{P(x)}{Q(x)} = \inftylimx→∞Q(x)P(x)=∞ (极限的正负取决于 a n a_nan 和 b m b_mbm 的符号)