育儿知识大全 > 母婴知识 > 宝宝教育 > 早教正文

双曲线的弦长公式怎么推的啊?

发布日期:2025-04-12

设直线与双曲线方程

设直线ll的方程为y=kx+my = kx + m,双曲线方程为x2a2y2b2=1\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}} = 1a>0,b>0a\gt0,b\gt0)。

将直线方程y=kx+my = kx + m代入双曲线方程x2a2y2b2=1\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}} = 1,得到:

x2a2(kx+m)2b2=1\frac{x^{2}}{a^{2}}-\frac{(kx + m)^{2}}{b^{2}} = 1

对上式进行整理:

首先展开x2a2k2x2+2kmx+m2b2=1\frac{x^{2}}{a^{2}}-\frac{k^{2}x^{2}+2kmx + m^{2}}{b^{2}} = 1

通分得到b2x2a2(k2x2+2kmx+m2)=a2b2b^{2}x^{2}-a^{2}(k^{2}x^{2}+2kmx + m^{2}) = a^{2}b^{2}

进一步展开为b2x2a2k2x22a2kmxa2m2a2b2=0b^{2}x^{2}-a^{2}k^{2}x^{2}-2a^{2}kmx - a^{2}m^{2}-a^{2}b^{2}=0

合并同类项得(b2a2k2)x22a2kmxa2(m2+b2)=0(b^{2}-a^{2}k^{2})x^{2}-2a^{2}kmx - a^{2}(m^{2}+b^{2}) = 0

 

 

设直线与双曲线的交点为A(x1,y1)A(x_{1},y_{1})B(x2,y2)B(x_{2},y_{2})

b2a2k20b^{2}-a^{2}k^{2}\neq0,由韦达定理可得x1+x2=2a2kmb2a2k2x_{1}+x_{2}=\frac{2a^{2}km}{b^{2}-a^{2}k^{2}}x1x2=a2(m2+b2)b2a2k2x_{1}x_{2}=\frac{-a^{2}(m^{2}+b^{2})}{b^{2}-a^{2}k^{2}}

 

推导弦长公式

由两点间距离公式,弦长AB=(x1x2)2+(y1y2)2\vert AB\vert=\sqrt{(x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2}}

因为y1=kx1+my_{1}=kx_{1}+my2=kx2+my_{2}=kx_{2}+m,所以y1y2=k(x1x2)y_{1}-y_{2}=k(x_{1}-x_{2})

AB=(x1x2)2+(k(x1x2))2=(1+k2)(x1x2)2\vert AB\vert=\sqrt{(x_{1}-x_{2})^{2}+(k(x_{1}-x_{2}))^{2}}=\sqrt{(1 + k^{2})(x_{1}-x_{2})^{2}}

=(1+k2)(x1x2)2

(x1x2)2=(x1+x2)24x1x2(x_{1}-x_{2})^{2}=(x_{1}+x_{2})^{2}-4x_{1}x_{2}

x1+x2=2a2kmb2a2k2x_{1}+x_{2}=\frac{2a^{2}km}{b^{2}-a^{2}k^{2}}x1x2=a2(m2+b2)b2a2k2x_{1}x_{2}=\frac{-a^{2}(m^{2}+b^{2})}{b^{2}-a^{2}k^{2}}代入(x1x2)2=(x1+x2)24x1x2(x_{1}-x_{2})^{2}=(x_{1}+x_{2})^{2}-4x_{1}x_{2}可得:

(x1x2)2=(2a2kmb2a2k2)2+4a2(m2+b2)b2a2k2(x_{1}-x_{2})^{2}=(\frac{2a^{2}km}{b^{2}-a^{2}k^{2}})^{2}+\frac{4a^{2}(m^{2}+b^{2})}{b^{2}-a^{2}k^{2}}

 

所以弦长AB=1+k2(x1+x2)24x1x2=1+k2(2a2kmb2a2k2)2+4a2(m2+b2)b2a2k2\vert AB\vert=\sqrt{1 + k^{2}}\cdot\sqrt{(x_{1}+x_{2})^{2}-4x_{1}x_{2}}=\sqrt{1 + k^{2}}\cdot\sqrt{(\frac{2a^{2}km}{b^{2}-a^{2}k^{2}})^{2}+\frac{4a^{2}(m^{2}+b^{2})}{b^{2}-a^{2}k^{2}}}

(x1+x2)24x1x2

=1+k2

(b2a2k22a2km)2+b2a2k24a2(m2+b2)

 

当直线斜率不存在时,设直线方程为x=x0x = x_{0},代入双曲线方程x2a2y2b2=1\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}} = 1,可得y=±bax02a2y=\pm\frac{b}{a}\sqrt{x_{0}^{2}-a^{2}}

,此时弦长AB=2bax02a2\vert AB\vert=\frac{2b}{a}\sqrt{x_{0}^{2}-a^{2}}

你感兴趣的

编辑推荐

今日推荐

热点内容