育儿知识大全 > 母婴知识 > 宝宝教育 > 早教正文

等比数列的求和公式是什么

发布日期:2025-04-10

等比数列的求和公式分为两种情况:

1. 当公比q=1q = 1

等比数列{an}\{ a_{n}\}的首项为a1a_{1},其前nn项和Sn=na1S_{n}=na_{1}。这是因为公比q=1q = 1时,等比数列的每一项都相等,都等于首项a1a_{1},那么前nn项的和就是nna1a_{1}相加,即na1na_{1}

2. 当公比q1q\neq1

等比数列{an}\{ a_{n}\}的首项为a1a_{1},公比为qq,其前nn项和Sn=a1(1qn)1qS_{n}=\frac{a_{1}(1 - q^{n})}{1 - q},也可以写成Sn=a1anq1qS_{n}=\frac{a_{1}-a_{n}q}{1 - q}(其中ana_{n}为该等比数列的第nn项,an=a1qn1a_{n}=a_{1}q^{n - 1} )。推导过程如下:
设等比数列{an}\{ a_{n}\}的首项是a1a_{1},公比是qq,前nn项和为SnS_{n},则Sn=a1+a1q+a1q2++a1qn1S_{n}=a_{1}+a_{1}q + a_{1}q^{2}+\cdots + a_{1}q^{n - 1} ①;
等式两边同乘以qq可得:qSn=a1q+a1q2+a1q3++a1qnqS_{n}=a_{1}q + a_{1}q^{2}+a_{1}q^{3}+\cdots + a_{1}q^{n} ②;
由① - ②得:

SnqSn=a1+(a1qa1q)+(a1q2a1q2)++(a1qn1a1qn1)a1qn(1q)Sn=a1a1qnSn=a1(1qn)1q\begin{align*} S_{n}-qS_{n}&=a_{1}+(a_{1}q - a_{1}q)+(a_{1}q^{2}-a_{1}q^{2})+\cdots+(a_{1}q^{n - 1}-a_{1}q^{n - 1}) - a_{1}q^{n}\\ (1 - q)S_{n}&=a_{1}-a_{1}q^{n}\\ S_{n}&=\frac{a_{1}(1 - q^{n})}{1 - q} \end{align*}

又因为an=a1qn1a_{n}=a_{1}q^{n - 1},即a1qn=anqa_{1}q^{n}=a_{n}q,所以Sn=a1anq1qS_{n}=\frac{a_{1}-a_{n}q}{1 - q}

你感兴趣的

编辑推荐

今日推荐

热点内容