育儿知识大全 > 母婴知识 > 宝宝教育 > 早教正文

急求双曲线的焦半径公式!请分情况(左右支)详细说明!

发布日期:2025-04-12

对于双曲线x2a2y2b2=1\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}} = 1a>0,b>0a\gt0,b\gt0

P(x0,y0)P(x_{0},y_{0})在双曲线左支上

设双曲线的左、右焦点分别为F1(c,0)F_1(-c,0)F2(c,0)F_2(c,0)c2=a2+b2c^2 = a^2 + b^2)。

根据双曲线的第二定义(平面内到一个定点和一条定直线的距离之比为常数eee>1e\gt1)的点的轨迹为双曲线,其中定点为焦点,定直线为准线),双曲线x2a2y2b2=1\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}} = 1的准线方程为x=±a2cx = \pm\frac{a^{2}}{c}

P(x0,y0)P(x_{0},y_{0})到左准线x=a2cx = -\frac{a^{2}}{c}的距离d1=x0+a2cd_1=x_{0}+\frac{a^{2}}{c}

离心率e=cae=\frac{c}{a},由双曲线的第二定义PF1=ed1\vert PF_1\vert = e\cdot d_1,可得PF1=e(x0+a2c)=ex0+a\vert PF_1\vert = e\left(x_{0}+\frac{a^{2}}{c}\right)=ex_{0}+a,又e=cae = \frac{c}{a},所以PF1=(ex0+a)\vert PF_1\vert=- (ex_{0}+a)(因为x0<ax_{0}\lt - aex0+a<0ex_{0}+a\lt0,取绝对值后加负号保证焦半径为正)。

P(x0,y0)P(x_{0},y_{0})到右准线x=a2cx=\frac{a^{2}}{c}的距离d2=a2cx0d_2=\frac{a^{2}}{c}-x_{0}PF2=ed2=e(a2cx0)=ex0+a\vert PF_2\vert = e\cdot d_2 = e\left(\frac{a^{2}}{c}-x_{0}\right)= - ex_{0}+a

 

P(x0,y0)P(x_{0},y_{0})在双曲线右支上

P(x0,y0)P(x_{0},y_{0})到左准线x=a2cx = -\frac{a^{2}}{c}的距离d1=x0+a2cd_1=x_{0}+\frac{a^{2}}{c}PF1=ed1=ex0+a\vert PF_1\vert = e\cdot d_1=ex_{0}+a(此时x0>ax_{0}\gt aex0+a>0ex_{0}+a\gt0 )。

P(x0,y0)P(x_{0},y_{0})到右准线x=a2cx=\frac{a^{2}}{c}的距离d2=x0a2cd_2=x_{0}-\frac{a^{2}}{c}PF2=ed2=ex0a\vert PF_2\vert = e\cdot d_2 = ex_{0}-a

 

总结:

对于双曲线x2a2y2b2=1\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}} = 1,若点P(x0,y0)P(x_{0},y_{0})在左支上,焦半径PF1=(ex0+a)\vert PF_1\vert=-(ex_{0}+a)PF2=ex0+a\vert PF_2\vert = - ex_{0}+a;若点P(x0,y0)P(x_{0},y_{0})在右支上,焦半径PF1=ex0+a\vert PF_1\vert=ex_{0}+aPF2=ex0a\vert PF_2\vert = ex_{0}-a(其中e=cae=\frac{c}{a}为双曲线的离心率)。

 

 

对于双曲线y2a2x2b2=1\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}} = 1a>0,b>0a\gt0,b\gt0

P(x0,y0)P(x_{0},y_{0})在双曲线下支上

设双曲线的上、下焦点分别为F1(0,c)F_1(0,c)F2(0,c)F_2(0, - c)c2=a2+b2c^2 = a^2 + b^2),准线方程为y=±a2cy=\pm\frac{a^{2}}{c}

P(x0,y0)P(x_{0},y_{0})到下准线y=a2cy = -\frac{a^{2}}{c}的距离d1=y0+a2cd_1=y_{0}+\frac{a^{2}}{c},离心率e=cae=\frac{c}{a}PF2=ed1=ey0+a\vert PF_2\vert = e\cdot d_1=ey_{0}+a,由于y0<ay_{0}\lt - aey0+a<0ey_{0}+a\lt0,所以PF2=(ey0+a)\vert PF_2\vert=-(ey_{0}+a)

P(x0,y0)P(x_{0},y_{0})到上准线y=a2cy=\frac{a^{2}}{c}的距离d2=a2cy0d_2=\frac{a^{2}}{c}-y_{0}PF1=ed2=ey0+a\vert PF_1\vert = e\cdot d_2=-ey_{0}+a

 

P(x0,y0)P(x_{0},y_{0})在双曲线 上支上

P(x0,y0)P(x_{0},y_{0})到下准线y=a2cy = -\frac{a^{2}}{c}的距离d1=y0+a2cd_1=y_{0}+\frac{a^{2}}{c}PF2=ed1=ey0+a\vert PF_2\vert = e\cdot d_1=ey_{0}+a(此时y0>ay_{0}\gt aey0+a>0ey_{0}+a\gt0)。

P(x0,y0)P(x_{0},y_{0})到上准线y=a2cy=\frac{a^{2}}{c}的距离d2=y0a2cd_2=y_{0}-\frac{a^{2}}{c}PF1=ed2=ey0a\vert PF_1\vert = e\cdot d_2=ey_{0}-a

 

总结:

对于双曲线y2a2x2b2=1\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}} = 1,若点P(x0,y0)P(x_{0},y_{0})在下支上,焦半径PF1=ey0+a\vert PF_1\vert=-ey_{0}+aPF2=(ey0+a)\vert PF_2\vert=-(ey_{0}+a);若点P(x0,y0)P(x_{0},y_{0})在上支上,焦半径PF1=ey0a\vert PF_1\vert=ey_{0}-aPF2=ey0+a\vert PF_2\vert=ey_{0}+a(其中e=cae = \frac{c}{a}为双曲线的离心率)

 

 

你感兴趣的

编辑推荐

今日推荐

热点内容