育儿知识大全 > 母婴知识 > 宝宝教育 > 早教正文

谁知道反三角函数的转换公式?

发布日期:2025-04-11

反三角函数的转换公式主要涉及不同反三角函数之间的相互转换以及与三角函数的关系,以下为您详细介绍:

反正弦函数与反余弦函数

arcsinx+arccosx=π2\arcsin x + \arccos x = \frac{\pi}{2}x[1,1]x\in[-1, 1]

证明:设α=arcsinx\alpha = \arcsin x,则x=sinαx = \sin\alpha,且α[π2,π2]\alpha\in[-\frac{\pi}{2}, \frac{\pi}{2}]

因为cos(π2α)=sinα=x\cos(\frac{\pi}{2} - \alpha) = \sin\alpha = x,且π2α[0,π]\frac{\pi}{2} - \alpha\in[0, \pi],所以arccosx=π2α\arccos x = \frac{\pi}{2} - \alpha,即arcsinx+arccosx=π2\arcsin x + \arccos x = \frac{\pi}{2}

例如,当x=12x = \frac{1}{2}时,arcsin12=π6\arcsin\frac{1}{2} = \frac{\pi}{6}arccos12=π3\arccos\frac{1}{2} = \frac{\pi}{3}π6+π3=π2\frac{\pi}{6} + \frac{\pi}{3} = \frac{\pi}{2}

 

反正切函数与反余切函数

arctanx+arccotx=π2\arctan x + \text{arccot} x = \frac{\pi}{2}xRx\in R

证明:设β=arctanx\beta = \arctan x,则x=tanβx = \tan\beta,且β(π2,π2)\beta\in(-\frac{\pi}{2}, \frac{\pi}{2})

因为cot(π2β)=tanβ=x\cot(\frac{\pi}{2} - \beta) = \tan\beta = x,且π2β(0,π)\frac{\pi}{2} - \beta\in(0, \pi),所以arccotx=π2β\text{arccot} x = \frac{\pi}{2} - \beta ,即arctanx+arccotx=π2\arctan x + \text{arccot} x = \frac{\pi}{2}

例如,当x=1x = 1时,arctan1=π4\arctan 1 = \frac{\pi}{4}arccot1=π4\text{arccot} 1 = \frac{\pi}{4}π4+π4=π2\frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}

 

反正弦函数与反正切函数

arcsinx=arctanx1x2\arcsin x=\arctan\frac{x}{\sqrt{1 - x^{2}}}

xx(1,1)x\in(-1, 1)

证明:设y=arcsinxy = \arcsin x,则x=sinyx = \sin yy(π2,π2)y\in(-\frac{\pi}{2}, \frac{\pi}{2})

根据三角函数关系tany=sinycosy\tan y=\frac{\sin y}{\cos y},且cosy=1sin2y=1x2\cos y = \sqrt{1 - \sin^{2}y}=\sqrt{1 - x^{2}}

=1x2

(因为y(π2,π2)y\in(-\frac{\pi}{2}, \frac{\pi}{2})cosy>0\cos y\gt0),所以tany=x1x2\tan y=\frac{x}{\sqrt{1 - x^{2}}}

x,则y=arctanx1x2y = \arctan\frac{x}{\sqrt{1 - x^{2}}}

x,即arcsinx=arctanx1x2\arcsin x=\arctan\frac{x}{\sqrt{1 - x^{2}}}

x

例如,当x=12x=\frac{1}{2}时,arcsin12=π6\arcsin\frac{1}{2}=\frac{\pi}{6}arctan121(12)2=arctan1232=arctan33=π6\arctan\frac{\frac{1}{2}}{\sqrt{1 - (\frac{1}{2})^{2}}}=\arctan\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}=\arctan\frac{\sqrt{3}}{3}=\frac{\pi}{6}

21=arctan23

21=arctan33

=6π

 

反余弦函数与反余切函数

arccosx=arccotx1x2\arccos x = \text{arccot}\frac{x}{\sqrt{1 - x^{2}}}

xx(1,1)x\in(-1, 1)

证明:设z=arccosxz = \arccos x,则x=coszx = \cos zz(0,π)z\in(0, \pi)

因为cotz=coszsinz\cot z=\frac{\cos z}{\sin z},且sinz=1cos2z=1x2\sin z = \sqrt{1 - \cos^{2}z}=\sqrt{1 - x^{2}}

=1x2

(因为z(0,π)z\in(0, \pi)sinz>0\sin z\gt0),所以cotz=x1x2\cot z=\frac{x}{\sqrt{1 - x^{2}}}

x,则z=arccotx1x2z = \text{arccot}\frac{x}{\sqrt{1 - x^{2}}}

x,即arccosx=arccotx1x2\arccos x = \text{arccot}\frac{x}{\sqrt{1 - x^{2}}}

x

例如,当x=12x = \frac{1}{2}时,arccos12=π3\arccos\frac{1}{2}=\frac{\pi}{3}arccot121(12)2=arccot1232=arccot33=π3\text{arccot}\frac{\frac{1}{2}}{\sqrt{1 - (\frac{1}{2})^{2}}}=\text{arccot}\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}=\text{arccot}\frac{\sqrt{3}}{3}=\frac{\pi}{3}

21=arccot23

21=arccot33

=3π

 

你感兴趣的

编辑推荐

今日推荐

热点内容