育儿知识大全 > 母婴知识 > 宝宝教育 > 早教正文

四边形面积公式

发布日期:2025-04-11

不同类型的四边形面积公式各不相同,以下是一些常见四边形及其面积公式:

平行四边形

已知底和高:面积公式为S=a×hS = a\times h,其中SS表示平行四边形的面积,aa表示平行四边形的底边长,hh表示这条底边对应的高。

已知相邻两边及夹角:若已知平行四边形相邻两边的长度分别为aabb,它们的夹角为θ\theta,则面积公式为S=a×b×sinθS = a\times b\times \sin\theta

矩形

矩形是特殊的平行四边形,由于四个角都是直角(sin90=1\sin90^{\circ}=1 ),面积公式为S=l×wS = l\times w,其中SS是矩形面积,ll表示矩形的长,ww表示矩形的宽。

正方形

正方形是特殊的矩形,四条边都相等。设边长为aa,其面积公式为S=a2S = a^{2}

菱形

已知对角线:菱形的面积等于两条对角线乘积的一半,即S=12d1×d2S=\frac{1}{2}d_1\times d_2,其中SS为菱形面积,d1d_1d2d_2分别是菱形的两条对角线长度。

已知底和高:也可以按照平行四边形面积公式计算,即S=a×hS = a\times haa为菱形的边长(任意一边),hh为这条边上的高。

已知边长和夹角:若边长为aa,某一内角为θ\theta ,面积公式为S=a2×sinθS = a^{2}\times \sin\theta

梯形

面积公式为S=(a+b)h2S=\frac{(a + b)h}{2},其中SS表示梯形面积,aabb分别是梯形的上底和下底长度,hh是梯形的高。

一般四边形

对于一般的不规则四边形,如果知道四条边aabbccdd以及一组对角之和θ\theta,可以用布雷特施奈德公式计算面积:
S=(sa)(sb)(sc)(sd)abcdcos2(θ2)S = \sqrt{(s - a)(s - b)(s - c)(s - d)-a b c d \cos^{2}\left(\frac{\theta}{2}\right)}


其中s=a+b+c+d2s=\frac{a + b + c + d}{2},为半周长。如果四边形是圆内接四边形(四个顶点都在同一个圆上),由于圆内接四边形对角互补,θ=180\theta = 180^{\circ}cos(θ2)=0\cos\left(\frac{\theta}{2}\right)=0,此时面积公式简化为S=(sa)(sb)(sc)(sd)S=\sqrt{(s - a)(s - b)(s - c)(s - d)}

,这个公式叫婆罗摩笈多公式。

你感兴趣的

编辑推荐

今日推荐

热点内容