育儿知识大全 > 母婴知识 > 宝宝教育 > 早教正文

求抛物线的焦点弦和焦半径公式推导急!

发布日期:2025-04-12

焦半径公式推导

对于抛物线y2=2px(p>0)y^{2}=2px(p\gt0),设抛物线上一点P(x0,y0)P(x_{0},y_{0}),焦点为F(p2,0)F(\frac{p}{2},0)
根据抛物线的定义,抛物线上任一点与焦点的距离等于该点到准线的距离。
抛物线y2=2px(p>0)y^{2}=2px(p\gt0)的准线方程是x=p2x = -\frac{p}{2}
P(x0,y0)P(x_{0},y_{0})到准线x=p2x = -\frac{p}{2}的距离为d=x0(p2)=x0+p2d = x_{0}-(-\frac{p}{2}) = x_{0}+\frac{p}{2}
所以PF=d=x0+p2\vert PF\vert = d = x_{0}+\frac{p}{2},即抛物线y2=2px(p>0)y^{2}=2px(p\gt0)上一点P(x0,y0)P(x_{0},y_{0})的焦半径公式为PF=x0+p2\vert PF\vert = x_{0}+\frac{p}{2}

同理,对于抛物线y2=2px(p>0)y^{2}=-2px(p\gt0) ,准线方程是x=p2x=\frac{p}{2},抛物线上一点P(x0,y0)P(x_{0},y_{0})到准线的距离d=p2x0d=\frac{p}{2}-x_{0},其焦半径公式为PF=p2x0\vert PF\vert=\frac{p}{2}-x_{0}

对于抛物线x2=2py(p>0)x^{2}=2py(p\gt0),焦点为F(0,p2)F(0,\frac{p}{2}),准线方程是y=p2y = -\frac{p}{2},抛物线上一点P(x0,y0)P(x_{0},y_{0})到准线的距离d=y0(p2)=y0+p2d = y_{0}-(-\frac{p}{2}) = y_{0}+\frac{p}{2},焦半径公式为PF=y0+p2\vert PF\vert = y_{0}+\frac{p}{2}

对于抛物线x2=2py(p>0)x^{2}=-2py(p\gt0),焦点为F(0,p2)F(0,-\frac{p}{2}),准线方程是y=p2y=\frac{p}{2},抛物线上一点P(x0,y0)P(x_{0},y_{0})到准线的距离d=p2y0d=\frac{p}{2}-y_{0},焦半径公式为PF=p2y0\vert PF\vert=\frac{p}{2}-y_{0}

焦点弦公式推导

以抛物线y2=2px(p>0)y^{2}=2px(p\gt0)为例,设过焦点F(p2,0)F(\frac{p}{2},0)的直线交抛物线于A(x1,y1)A(x_{1},y_{1})B(x2,y2)B(x_{2},y_{2})两点。
若直线ABAB斜率存在,设直线ABAB的方程为y=k(xp2)y = k(x-\frac{p}{2})k0k\neq0)。
联立直线与抛物线方程{y=k(xp2)y2=2px\begin{cases}y = k(x-\frac{p}{2})\\y^{2}=2px\end{cases},将y=k(xp2)y = k(x-\frac{p}{2})代入y2=2pxy^{2}=2px可得:

[k(xp2)]2=2pxk2(x2px+p24)=2pxk2x2k2px+k2p242px=0k2x2(k2p+2p)x+k2p24=0\begin{align*} [k(x-\frac{p}{2})]^{2}&=2px\\ k^{2}(x^{2}-px+\frac{p^{2}}{4})&=2px\\ k^{2}x^{2}-k^{2}px+\frac{k^{2}p^{2}}{4}-2px&=0\\ k^{2}x^{2}-(k^{2}p + 2p)x+\frac{k^{2}p^{2}}{4}&=0 \end{align*}

由韦达定理得x1+x2=k2p+2pk2=p+2pk2x_{1}+x_{2}=\frac{k^{2}p + 2p}{k^{2}} = p+\frac{2p}{k^{2}}
根据焦半径公式,AF=x1+p2\vert AF\vert = x_{1}+\frac{p}{2}BF=x2+p2\vert BF\vert = x_{2}+\frac{p}{2}
所以焦点弦长AB=AF+BF=x1+p2+x2+p2=x1+x2+p\vert AB\vert=\vert AF\vert+\vert BF\vert = x_{1}+\frac{p}{2}+x_{2}+\frac{p}{2}=x_{1}+x_{2}+p
x1+x2=p+2pk2x_{1}+x_{2}=p+\frac{2p}{k^{2}}代入可得AB=p+2pk2+p=2p+2pk2=2p(1+k2)k2\vert AB\vert = p+\frac{2p}{k^{2}}+p = 2p+\frac{2p}{k^{2}}=\frac{2p(1 + k^{2})}{k^{2}}
若直线ABAB垂直于xx轴,此时直线ABAB方程为x=p2x=\frac{p}{2},代入y2=2pxy^{2}=2pxy2=p2y^{2}=p^{2}y=±py=\pm p,则AB=2p\vert AB\vert = 2p
若设直线ABAB的倾斜角为α\alpha,则k=tanαk = \tan\alphaAB=2psin2α\vert AB\vert=\frac{2p}{\sin^{2}\alpha}

对于抛物线y2=2px(p>0)y^{2}=-2px(p\gt0),过焦点F(p2,0)F(-\frac{p}{2},0)的直线交抛物线于两点,焦点弦长AB=2psin2α\vert AB\vert=\frac{2p}{\sin^{2}\alpha}α\alpha为直线倾斜角)。

对于抛物线x2=2py(p>0)x^{2}=2py(p\gt0),过焦点F(0,p2)F(0,\frac{p}{2})的直线交抛物线于两点,焦点弦长AB=2pcos2α\vert AB\vert=\frac{2p}{\cos^{2}\alpha}α\alpha为直线倾斜角)。

对于抛物线x2=2py(p>0)x^{2}=-2py(p\gt0),过焦点F(0,p2)F(0,-\frac{p}{2})的直线交抛物线于两点,焦点弦长AB=2pcos2α\vert AB\vert=\frac{2p}{\cos^{2}\alpha}α\alpha为直线倾斜角) 。

你感兴趣的

编辑推荐

今日推荐

热点内容